s with the nuclei becomes in e substance may be regardui erfect Fermi electron qus. of $d K / d p$ in the nonrelativi lativistic approximation* is tively. It should be noted $1 t$ oly only at extremely high po to the same source, the tiat $\operatorname{atm} \gg p \gg 5 \times 10^{\circ} Z^{m a n}: 1$ average atomic number of 1 ! as the value $4 / 3$ is for $p \gg 1$ a $(Z=11)$ the inequality comes $10^{17} \gg p \gg 1.5 \times$ is far above the range of an a and probably even above t! trapolations are needed! T1 pressure found in compiling ! ! ons is a shock wave point for aluminum oxide. Birr ated the pressure at the comt e of the order of 3.4 Mh .1 sidered normal for $d K / d p$ n a monotone fashion as th: s. Equation 2 provides th. or, but the leveling off a few per cent of the value " sures p of the order of $10 a k$ able values of a, is very lou ${ }^{12} \mathrm{~atm}$. Therefore, in order sted behavior over the prihe extrapolation is desired, it t the best m to use in equaubstantially larger than $5: 3$ ensitive point, however, sim or C) remains undetermimas ue of the second derivation 3 , can still be adjusted
e first two pressure derin nodulus at $P=0$ and : e first derivative as $P \rightarrow$ o the corresponding val. puation by using the s:" \imath in the two equations ', or, equivalently, (' similar match to the $13 i t$ $=4\left[\right.$ Birch, 193s, 190° and $C=-35 / 9$, wher tch requires $m=3: 3$ $-143 / 9$.
s to be presented here. $=5 / 3$ when $C<0$,
© ${ }^{\prime}$ and $K_{0}{ }^{\prime}$ both positive we used

$$
\begin{equation*}
m-K_{0}^{\prime}=\frac{C}{2\left[K_{0}^{\prime}-(2 C)^{1 / 2}\right]} \tag{4}
\end{equation*}
$$

This expression was obtained as an approximan on to the smallest value of m that allowed K - fall to zero on $-a<P<0$, assuming - $\ll K_{0}{ }^{\prime 2}$. The condition that K drop conaumously to zero on $P<0$ may be regarded as n 'instability' condition. It is satisfied auto4ically whenever $K_{0}{ }^{\prime}>0$ and $C<0$. It is wt considered essential for the purpose of extrawating on $P>0$, but in the absence of any ther guidance, it seemed to be a reasonable riterion for relating the two adjustable paramars, say m and C, when K_{0}^{\prime} and C are both witive. The idea that m should be near the mallest value that allows this instability foliws from the feeling that the condition $m>$ $h^{\prime}{ }^{\prime}$, needed to avoid a singularity on $P>0$ in this case, is likely to give an m that is already too large to be a correct limiting value of $\hbar / d p$ as $p \rightarrow \infty$.
When $K_{0}{ }^{\prime}<0$, as for vitreous silica, many armulas including those of Murnaghan and Keane necessarily predict an instability ($K \leq$ ${ }^{i 1}$) on $P>0$. Although this may not be a great atastrophe, and could even be represented as Nvantageous (because an actual material with $\hat{h}_{n}^{\prime}<0$ could be presumed to undergo a phase ramsition, through which the extrapolation Aould not be continued analytically), it is inresting to note that the present formula allows wh an instability to be avoided by choosing sufficiently high positive value for C. This - illustrated in Figure 1, which shows $K / K_{\text {o }}$ wrsus P for three different values of C with $\kappa_{0}{ }^{\prime}=-6.5$ and $m=1$. The value $K_{0}{ }^{\prime}=-6.5$ aplies to vitreous silica [McSkimin as cited by Inderson, 1961].

Compression Equation

The next task is to relate the volume v to the arosure, subject to equation 2 and the definimin of the bulk modulus

$$
\begin{gather*}
K=-v d p / d v \quad \text { (5) } \\
\forall=\left\{\left[\frac{a}{m P^{2}+(1+A+a m) P+a}\right]\right. \\
\left.\cdot\left[\frac{4 a m+2 m P\left[(q)^{1 / 2}+(1+A+a m)\right]}{4 a m-2 m P\left[(q)^{1 / 2}-(1+A+a m)\right]}\right]^{(1+A-a m) /(q)^{2 / 2}}\right\}^{1 / 2 m} \tag{9}
\end{gather*}
$$

